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Further observations on the mean velocity
distribution in fully developed pipe flow
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(Received 7 October 2002 and in revised form 19 September 2003)

The measurements by Zagarola & Smits (1998) of mean velocity profiles in fully
developed turbulent pipe flow are repeated using a smaller Pitot probe to reduce the
uncertainties due to velocity gradient corrections. A new static pressure correction
(McKeon & Smits 2002) is used in analysing all data and leads to significant
differences from the Zagarola & Smits conclusions. The results confirm the presence
of a power-law region near the wall and, for Reynolds numbers greater than 230 × 103

(R+ > 5 × 103), a logarithmic region further out, but the limits of these regions and
some of the constants differ from those reported by Zagarola & Smits. In particular,
the log law is found for 600 <y+ < 0.12R+ (instead of 600 <y+ < 0.07R+), and the
von Kármán constant κ , the additive constant B for the log law using inner flow
scaling, and the additive constant B∗ for the log law using outer scaling are found
to be 0.421 ± 0.002, 5.60 ± 0.08 and 1.20 ± 0.10, respectively, with 95% confidence
level (compared with 0.436 ± 0.002, 6.15 ± 0.08, and 1.51 ± 0.03 found by Zagarola &
Smits). The data also confirm that the pipe flow data for ReD � 13.6 × 106 (as a
minimum) are not affected by surface roughness.

1. Introduction
1.1. Background and previous work

Zagarola & Smits (1998) (referred to hereinafter as ZS) presented measurements in
fully developed pipe flow for Reynolds numbers in the range 31 × 103 to 35 × 106

to study the scaling of the mean velocity profile. They found two overlap regions: a
power law for 60 <y+ < 500, and, for Reynolds numbers greater than 400 × 103, a
log law in the region 600 < y+ < 0.07R+. Here, y+ = yuτ/ν, y is the distance from the
wall, uτ =

√
τw/ρ, ν is the kinematic viscosity, τw is the shear stress at the wall, and

ρ is the fluid density. Also, R+ =Ruτ/ν where R is the radius of the pipe (=D/2).
These findings were supported by a new scaling argument based on dimensional
analysis. For high Reynolds numbers, the scaling for the mean velocity profile in fully
developed turbulent pipe flow may be expressed in terms of an inner-layer scaling
given by

U = f ′(y, ui, ν, R) (1.1)
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and an outer-layer scaling given by

Uc − U = g′(y, u0, ν, R) (1.2)

where U is the mean velocity, Uc is the centreline velocity, and f ′ and g′ denote
a functional dependence. The inner velocity scale ui is always taken to be uτ , but
choosing the outer velocity scale u0 is more controversial, as will be seen below.
Non-dimensionalizing equations (1.1) and (1.2) gives, respectively,

U+ = f (y+, R+), (1.3)

Uc − U

u0

= g(η, R+), (1.4)

where U+ = U/uτ and η = y/R. ZS showed that the velocity scaling in the overlap
region (where y+ � 1 and η � 1) can be of two types: complete similarity where u0/uτ

is independent of Reynolds number, and incomplete similarity where u0/uτ continues
to depend on Reynolds number. In the case of complete similarity, matching of the
velocity gradients in the overlap region leads to a logarithmic velocity profile, which
can be expressed in inner-layer variables as

U+ =
1

κ
ln y+ + B (1.5)

and in outer-layer variables as

Uc − U

uτ

= − 1

κ
ln η + B∗ (1.6)

where κ (usually called the von Kármán constant), B and B∗ are constants ind-
ependent of Reynolds number.

Alternatively, in the case of incomplete similarity, matching the velocities as well
as the velocity gradients in the overlap region yields a power-law dependence which
in terms of inner-layer variables may be written as

U+ = Cy+γ (1.7)

where the coefficient C and the exponent γ are independent of Reynolds number.
The study by ZS showed that the power-law constants were given by C = 8.70 and
γ =0.137, and the log-law constants were given by κ = 0.436 ± 0.002, B = 6.15 ± 0.08,
and B∗ = 1.51 ± 0.03. These values of the log-law constants are different from the
commonly accepted values of about 0.41, 5.0 and 0.8, respectively. for the so-called
‘standard log law’ discussed below.

ZS also proposed a new velocity scale for the outer region, u0 = Uc − Ū . They
argued that u0 =Uc − Ū was a more representative outer velocity scale than the
friction velocity, which describes the inner flow and is impressed upon the outer
region. Since the ratio (Uc − Ū )/uτ becomes constant at high Reynolds number, there
is no change to the overlap analysis leading to a log law at these Reynolds numbers. At
low Reynolds numbers (high enough that an overlap region still exists), the variation
of (Uc − Ū )/uτ with Reynolds number means that matching velocity gradients does
not lead to a Reynolds-number-independent condition. However matching velocities
and velocity gradients leads to the power law of equation (1.7).

ZS obtained their measurements using a round Pitot probe of 0.9 mm OD. A
number of corrections were made to the data, including corrections to the Pitot tube
pressure for the effects of turbulence, viscosity, and velocity gradient, and corrections
to the static pressure for viscous effects. Subsequent examination of the ZS data
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Figure 1. Velocity profiles for the 0.9mm (ZS) data at ReD = 3 × 106 (solid lines) and 10 × 106

(dashed lines): (a) results using Shaw’s (1960) correction as reported by ZS; (b) results using
correction according to McKeon & Smits (2002).

revealed slight deviations between the velocity profiles in inner scaling (figure 1a).
The deviations (also called ‘steps’) appear as departures from the logarithmic region
for ReD > 3 × 106 and increase with Reynolds number.

In ZS, the comparison of the data with the log law and the power law was done
by fitting the scaling laws to the mean velocity profile. As pointed out by W. George
(private communication), the mean velocity itself is not a very sensitive quantity in
distinguishing a log law from a power law because the differences are small. This is
especially true at low Reynolds number. Fractional differences were therefore used, as
suggested by Zagarola, Perry & Smits (1997). The fractional difference E = �U+/U+

between a fitted curve and the measured data is defined as

E =
�U+

U+
= 1 −

U+
f it

U+
measured

. (1.8)

Zagarola et al. suggested that a good fit to the experimental data should result in
random relative errors that are less than the mean experimental error.

Traditionally, dimensional analysis using u0 = uτ has yielded a log law (Millikan
1938). The so-called ‘standard log law’ arose from the conclusions of several studies
in low-Reynolds-number boundary layers, including that by Bradshaw (1976), that
the overlap region was best represented by a log law with κ ≈ 0.41 and B ≈ 5.0
(Schlichting 1979).

Österlund et al. (2000) in a more recent study of boundary layers found a log law
with κ = 0.38 and B =4.1 in the range 200/δ+ < y/δ < 0.15 for Reθ > 6000. Although
this log law appears over a rather short region in y+ (200 to about 1000), we should
note that this includes virtually all boundary layer studies, where few studies have
a large enough Reynolds number range to investigate the overlap region with an
upper extent where y+ � 1000. This includes the work by Österlund et al. where the
maximum value of Reθ was 27 000.

In a medium-Reynolds-number channel flow (Reh < 1.2 × 105 based on half-channel
height and mean velocity, 1000 < Reτ < 5000), Zanoun et al. (2002) found a similar
value of the von Kármán constant, κ =0.379, with B = 4.05, for Reτ > 2000 within
the limits y+ > 100 and y/h< 0.15. However, they also suggested that a log law may
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be valid for limits reaching y+ =50 and y/h= 0.9, which presumably yields different
log-law constants.

1.2. Corrections to the measurements

Perry, Hafez & Chong (2001) attributed the steps in the data (which were exacerbated
in their analysis by a different choice of κ and B) to roughness effects combined
with inappropriate Pitot tube corrections. Recent experiments at Princeton, however,
have demonstrated that these deviations were in fact due to inaccurate static pressure
corrections (McKeon & Smits 2002) and the absence of a wall term in the Pitot
correction. ZS used the static pressure correction proposed by Shaw (1960), who
suggested that the error, �p, depends only on d+

t and reaches an asymptotic value
of approximately 3.0τw for d+

t � 1000, where d+
t = uτdt/ν and dt is the hole diameter.

McKeon & Smits (2002) have shown instead that the error continues to grow with
increasing Reynolds number as long as the ratio dt/D is small, and reaches a value
of greater than 7τw at the highest Reynolds numbers obtained in the pipe, where
d+

t ≈ 6500. Although the new correction corresponds to a change of less than 1% in
the maximum dynamic pressure for all cases presented here, the new static pressure
correction removes the deviations observed in the ZS profiles to within the limits of
experimental uncertainty (see figure 1b).

To understand the effect of Pitot probe corrections on the similarity scaling and
the value of the log-law constants, a further study was undertaken by McKeon
et al. (2003) using four different sized Pitot tubes, measuring 0.3 mm to 1.83 mm OD.
A new correction scheme was suggested that collapses the data markedly better than
other wall corrections methods, including that suggested by MacMillan (1956), for
y < 2d , where d is the outer diameter of the Pitot tube, and that agrees well with
MacMillan’s and Chue’s (1975) methods over the entire Reynolds number range for
y � 2d .

1.3. Current study

ZS measured 28 velocity profiles over a range of Reynolds numbers from 31 × 103

to 36 × 106 using a 0.9 mm Pitot probe. We use these data, in addition to new
measurements encompassing 21 profiles obtained using a Pitot probe of 0.3 mm
replicating the ZS Reynolds numbers over the range from 74 × 103 to 35 × 106. Both
sets of data included measurements of the pressure drop to determine the friction
factor. The Reynolds numbers and friction factors for the mean velocity measurements
analysed in this work are shown in table 1, along with the symbols that will be used
in the figures that follow.

Since an appropriate Pitot correction must surely collapse data from probes of all
diameters, the pipe flow mean velocity measurements were analysed in two different
ways to ensure the conclusions were not affected by the Pitot correction. First,
all points taken within 2d of the wall, that is, where the Pitot probe corrections
disagreed, were removed from the data set. The remaining data points were therefore
independent of the particular Pitot tube corrections used. To be consistent with ZS the
Chue (1975) correction was applied to the data, although any of the other corrections,
such as MacMillan (1956), give the same results. This data set (y � 2d) was used in
the analysis of the log-law shown here. Second, to investigate the near-wall behaviour,
all the data points for y � d were used. In this case, the data were corrected using
the method suggested by McKeon et al. (2003), which gives good agreement between
data from probes of different diameters for y � d . It should be noted that analysis of
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Symbol ReD λ Symbol ReD λ

� 75 × 103 0.0193 � 2.3 × 106 0.0103
� 150 × 103 0.0167 � 3.1 × 106 0.0099
� 230 × 103 0.0153 � 4.4 × 106 0.0094
	 310 × 103 0.0147 | 6.1 × 106 0.0090

 410 × 103 0.0138 � 7.7 × 106 0.0086
◦ 540 × 103 0.0132 P 10.2 × 106 0.0082
� 750 × 103 0.0125 
 13.6 × 106 0.0080
• 1.0 × 106 0.0118 © 18.2 × 106 0.0077
� 1.3 × 106 0.0113 � 35.3 × 106 0.0071
X 1.7 × 106 0.0108

Table 1. Nomenclature and friction factor data (0.9mm Pitot probe).

this second data set confirmed all the conclusions derived using the first data set (the
set that was independent of the Pitot tube correction used).

1.4. Experimental considerations

In other respects, the experimental apparatus and techniques used for the new
dataset were virtually the same as those used by ZS, and their error analysis applies
almost unchanged to the measurements reported here. The maximum error in velocity
measurement remained 0.35%. However, to improve the accuracy of the wall distance
measurement, a linear encoder with an accuracy of 5 µm per count was used to
determine the wall distance (ZS reported an accuracy of 25 µm). In addition, the
starting position for the Pitot probe was determined by detecting the electrical contact
between the Pitot probe and the pipe surface to an accuracy of 5 µm, compared to
50 µm for ZS. The accumulated position error of running the present traverse system
forward and backward once over a distance of 71 mm was generally less than 30 µm,
compared with 50 µm accuracy for ZS. The position accuracy was estimated to be
±1.7% for measuring points close to the pipe surface and ±0.05% for data points
taken near the centre of the pipe. Across the pipe radius, 57 data points were taken
with logarithmically uniform spacing. The first point was taken with the Pitot probe
touching the pipe surface, the 56th point was located at the centre of the pipe, and the
57th point was on the other side of the pipe centre. The symmetry of the flow across
the pipe, first noted by Zagarola (1996) was confirmed in the present experiment.
The data were sampled using a new PC-based data acquisition system (National
Instrument data acquisition boards driven by Labview software) at 500 Hz over a two
minute period.

2. Mean velocity results
Figure 2 shows sample mean velocity profiles from the present work (i.e. under the

new corrections) for the ZS data.
Both datasets were processed in three steps. First, the value of κ was determined

from the friction factor data by fitting

1√
λ

= C1 log(Re
√
λ) + C2 (2.1)
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Figure 2. Sample mean velocity profiles for the 0.9mm (ZS) data under the current analysis
for every second Reynolds number, starting from ReD = 31 × 103 up to ReD = 18 × 106.

to the data, where

C1 =
1

κ2
√

2 log(e)
. (2.2)

Equation (2.1) is obtained by integrating the logarithmic profile from the wall to the
centreline to obtain the mean velocity (Ū 2 = 8u2

τ /λ). This procedure for finding κ will
hold as long as roughness is not important: the effects of roughness would cause
an apparent increase in the value of κ . The curve fit was performed over different
Reynolds number ranges until a range was found where κ did not change when the
range was made smaller. Finding a constant value of κ indicates simultaneously that
roughness effects are not significant, that outer similarity is observed, and that the error
in deriving equation (2.1) caused by ignoring the deviation of the velocity profile from
the log law close to the wall is negligible. This procedure yielded κ = 0.421 ± 0.002 (in
contrast to κ =0.436 as found by ZS) when the curve fit was performed over the range
310 × 103 � ReD � 13.6 × 106. Any range that included lower Reynolds numbers did
not yield a constant value of κ . The same value of κ over the same range of Reynolds
numbers was also obtained from a curve-fit of the non-dimensional centreline velocity
U+

CL. This must be true for equations (1.5), (1.6) and (2.1) to hold simultaneously, and
hence for a logarithmic region to exist in both inner and outer scaling.

Second, for the Pitot correction-independent data set (y � 2d), the value of the
additive constant in inner scaling, B , was found by plotting the quantity ψ , where

ψ = U+ − 1

κ
ln y+. (2.3)

In the logarithmic region, ψ should be constant and equal to B . Figures 3 and 4
show that for 600 < y+ < 0.12R+, B is constant and equal to 5.60 ± 0.08, where the
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Figure 3. The difference between the velocity profile and the log-law for the 0.9 mm velocity
profiles (κ = 0.421): (a) inner scaling, y/R < 0.12; (b) outer scaling, y+ � 600. Reynolds
numbers � 310 × 103. Symbols as in table 1.

standard uncertainty is only 0.02 and the additional 0.06 is due to the uncertainty in
κ . This compares with the value of 6.15 for 600 <y+ < 0.07R+ reported by ZS.

At the highest Reynolds numbers (ReD � 18 × 106 for the ZS data and ReD �
13.6 × 106 for the new data), there is an apparent decrease in B , which may indicate
the onset of roughness. However, since the decrease in B from its average value
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Figure 4. The difference between the velocity profile and the log-law for the 0.3 mm velocity
profiles (κ = 0.421): (a) inner scaling, y/R < 0.12; (b) outer scaling, y+ � 600. Reynolds
numbers � 310 × 103.

is within the uncertainty limits for most of these Reynolds numbers, no particular
conclusion can be made regarding when roughness becomes important.

Third, we use the method of fractional differences defined by equation (1.8) to
determine the fit of the log-law with κ =0.421 and B = 5.60 to the individual velocity
profiles, over the range 600 < y+ < 0.12R+. The experimental errors for U and U+

were estimated to be about ±0.3% and ±0.57%, respectively. The curve-fit was judged
to be unacceptable if the fractional differences E were larger than the experimental
uncertainty.

It may be seen from figure 5 that the new analysis presented here leads to marginally
smaller fractional differences and less systematic behaviour than shown by the ZS
results, which display an increasing error with increasing y+.
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Figure 5. Fractional differences as defined by equation (1.8) at selected Reynolds numbers
(see table 1): (a) 0.9mm data, ZS log-law results; (b) 0.3mm data and (c) 0.9 mm data, new
log-law analysis.

For the outer-layer scaling, we now assume that κ = 0.421, and calculate B∗ for each
data point in the logarithmic region (that is, for 600 <y+ < 0.12R+). Only profiles
with at least six data points in the assumed logarithmic region were analysed. At
the higher Reynolds numbers, 10 data points were in the assumed log region for
the 0.9 mm probe data (24 points for the 0.3 mm probe data). The values of B∗

at each Reynolds number were averaged (no weighting) and the results are shown
in figure 6. At Reynolds numbers greater than 13.6 × 106 the value of B∗ falls off,
possibly suggesting the effects of roughness. B∗ has a constant value of 1.20 ± 0.1
(again the majority of the uncertainty lies in the value of κ) for 230 × 103 � ReD �
13.6 × 106.
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Figure 6. The variation of B∗ with Reynolds number: 0.9mm data.

Figure 7. The variation of ξ with Reynolds number: 0.9mm data.

When UCL − Ū is used as the velocity scale, the additive constant becomes B∗/ξ
(where ξ = (UCL − Ū )/uτ ≈ 4.28, see below) which has a value of 0.280 ± 0.02, and the
slope becomes 1/κξ which has a value of 1/(1.798 ± 0.01). For 600/R+ <y/R < 0.12,
a logarithmic overlap region appears to exist which can be accurately represented by

UCL − U

UCL − Ū
=

−1

1.798
ln η + 0.28 (2.4)

or
UCL − U

uτ

=
−1

0.421
ln η + 1.20. (2.5)

The velocity profile data are within ±1.0% (95% confidence interval) of equations (2.4)
and (2.5). The relatively large uncertainty can be attributed to the uncertainty in
UCL − U , which is the difference between two large numbers.

As indicated earlier, there was no region of Reynolds number less than
ReD = 310 × 103 for which the friction factor data or centreline velocity U+

CL yielded a
constant value of κ . (Note that at ReD = 230 × 103, y+ = 600 at y/R ≈ 0.12 and hence
the region of the predicted log law would be negligible.) As noted above, the ratio
of the velocity scales ξ =(UCL − Ū )/uτ must be constant for there to exist a log law
in both inner and outer scaling in the accepted forms. It can be seen from figure 7
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Figure 8. The difference between the velocity profiles and a logarithmic region with slope
1/0.385 (y+ = 350, 950 marked by dashed lines): 0.3mm data.

that this ratio of velocity scales reaches a constant value of approximately 4.28 for
ReD � 310 × 103, which agrees well with the limits on where a log law was observed
in the data.

Up to this point, only data points for y � 2d were included in the analysis, and
the data were therefore independent of Pitot tube corrections. However, to study the
near-wall region we need additional points near the wall, and Pitot tube corrections
become important. We will use the correction suggested by McKeon et al. (2003), on
the basis that it produces good agreement among different diameter Pitot data sets
down to y ≈ d , considerably better than other methods such as MacMillan (1956)
and Chue (1975). However, as indicated earlier, all these corrections lead to the same
conclusions when data for y � 2d are analysed.

It was found that log-laws with the constants determined by Österlund et al. (2000)
(κ = 0.38 and B = 4.1) and Zanoun et al. (2002) (κ =0.379 and B = 4.05) fit our pipe
flow measurements quite well, but only for the small region where 350 <y+ < 950,
compared with their range of 200/δ+ < y/δ < 0.15. The fit could be improved a little
by using the values 0.385 and 4.15, as shown in figure 8, where the difference ψ2 is
defined as

ψ2 = U+ − 1

0.385
ln y+ − 4.15. (2.6)

However, even if this region scales logarithmically, similarity is not complete since
the ratio (UCL − Ū )/uτ is not constant in this region. Furthermore, the friction factor
data for this range of Reynolds numbers does not lead to a constant value of κ , so
that this result may simply be spurious.

Finally, a power law is found to be a good fit for the region 50 <y+ < 300 or
0.12R+, where the constants were found using a least-squares determination to be
given by C = 8.47 and γ = 0.142. The variation of ψ3 and E is shown in figure 9
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Figure 9. The difference, ψ3, and fractional difference, E, between the velocity profiles
and a power law (C = 8.47 and λ= 0.142): 0.3mm data.

where

ψ3 = U+ − 8.47y+0.142. (2.7)

The U+ data are within ±0.33% (95% confidence limits) of this power law over
this range, which is close to the experimental uncertainty in U+ (±0.57%). Note that
this region is similar to that found by ZS, who reported a power law with C = 8.70
and λ=0.137 for the region 60 < y+ < 500 or 0.15R+.

3. Conclusions and discussion
Use of the appropriate high-Reynolds-number static pressure correction leads to

significant changes to the analysis of ZS. The new results confirm the presence of a
power-law region near the wall and, for Reynolds numbers greater than 200 × 103,
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a logarithmic region further out, but the limits of these regions and some of the
constants are different. In particular, the power law is found only for 50 <y+ < 300
(instead of 60 < y+ < 500 as reported by ZS), and the multiplicative constant and
exponent are 8.48 and 0.142, respectively (instead of 8.70 and 0.137).

The log law is found for 600 < y+ < 0.12R+ (instead of 600 <y+ < 0.07R+), and
the von Kármán constant κ , the additive constant B for the log law using inner flow
scaling, and the additive constant B∗ for the log law using outer scaling are found
to be 0.421 ± 0.002, 5.60 ± 0.08 and 1.20 ± 0.1, respectively, with 95% confidence
level (compared with 0.436 ± 0.002, 6.15 ± 0.08, and 1.51 ± 0.03 found by ZS). In
addition, the new data confirm the conclusions by ZS that their pipe flow data are not
affected by surface roughness until the highest Reynolds numbers (ReD > 13.6 × 106,
at a minimum).

In the region 350 <y+ < 950, the data could be said to be in reasonably good
agreement with the findings by Österlund et al., who suggested a log law with
κ = 0.38 and B = 4.1 for 200 <y+ < 0.15R+ for turbulent boundary layers. The values
of κ and B reported by Österlund et al. are markedly different, however, from the
values given here for the region of complete similarity which occurs further from the
wall, that is for 600 <y+ < 0.12R+, and the power and log law scalings given in this
paper represent the data more accurately.
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Österlund, J. M., Johansson, A. V., Nagib, H. M. & Hites, M. H. 2000 A note on the overlap
region in turbulent boundary layers. Phys. Fluids 12, 1–4.

Perry, A. E., Hafez, S. & Chong, M. S. 2001 A possible reinterpretation of the Princeton Superpipe
data. J. Fluid Mech. 439, 395–401.

Schlichting, H. 1979 Boundary Layer Theory. McGraw-Hill.

Shaw, R. 1960 The influence of hole dimensions on static pressure measurements. J. Fluid Mech. 7,
550–564.

Zagarola, M. V. 1996 Mean flow scaling in turbulent pipe flow. PhD thesis, Princeton University.

Zagarola, M. V., Perry A. E. & Smits, A. J. 1997 Log laws or power laws: The scaling in the
overlap region. Phys. Fluids 9, 2094–2100.

Zagarola, M. V. & Smits, A. J. 1998 Mean flow scaling in turbulent pipe flow. J. Fluid Mech. 373,
33–79 (referred to herein as ZS).

Zanoun, E.-S., Nagib, H., Durst, F. & Monkewitz, P. 2002 Higher Reynolds number channel
data and their comparison to recent asymptotic theory (Invited). AIAA Paper 2002-1102,
A02-14297.


